Enhancement of single particle rare earth doped NaYF4: Yb, Er emission with a gold shell.

نویسندگان

  • Ling Li
  • Kory Green
  • Hans Hallen
  • Shuang Fang Lim
چکیده

Upconversion of infrared light to visible light has important implications for bioimaging. However, the small absorption cross-section of rare earth dopants has limited the efficiency of these anti-Stokes nanomaterials. We present enhanced excitation absorption and single particle fluorescent emission of sodium yttrium fluoride, NaYF4: Yb, Er based upconverting nanoparticles coated with a gold nanoshell through surface plasmon resonance. The single gold-shell coated nanoparticles show enhanced absorption in the near infrared, enhanced total emission intensity, and increased green relative to red emission. We also show differences in enhancement between single and aggregated gold shell nanoparticles. The surface plasmon resonance of the gold-shell coated nanoparticle is shown to be dependent on the shell thickness. In contrast to other reported results, our single particle experimental observations are corroborated by finite element calculations that show where the green/red emission enhancement occurs, and what portion of the enhancement is due to electromagnetic effects. We find that the excitation enhancement and green/red emission ratio enhancement occurs at the corners and edges of the doped emissive core.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Luminescence Properties of Water Soluble α-NaGdF4/β-NaYF4:Yb,Er Core–Shell Nanoparticles

Hexagonal phase (β) sodium rare earth tetrafluorides (NaREF4, RE = Y, Gd, Lu, et al.) are considered the ideal matrices for lanthanide (Ln) ions doped upconversion (UC) luminescence materials, because they can provide favorable crystal lattice structures for the doped luminescent Ln ions to make intensive emissions. However, the cubic phase (α) NaREF4 always preferentially forms at low reaction...

متن کامل

Sequential Growth of Uniform β-NaYF4@β-NaLnF4 (Ln = Y, Lu, Yb) Microcrystals with Luminescent Properties of Multicolor Tuning and Dual-Mode Emission

We synthesized the uniform core-shell microstructured compounds with hexagonal phase NaYF₄:Er/Yb microrods as the core and hexagonal phase NaLnF₄ (NaYbF₄, NaLuF₄:Yb/Tm, NaYF₄:Yb/Er, NaYF₄:Eu) as the shell based on the hydrothermal reaction. These microscale core-shell structures provided a platform for the spatially confining optical process while possessing high luminescence efficiency. The th...

متن کامل

Surface plasmon enhanced up-conversion from NaYF4:Yb/Er/Gd nano-rods.

The surface plasmons that are enabled by grating coupling in two-dimensional gold nano-particle arrays (AuNPAs) affected the spectral characteristics of the up-conversion (UC) emission from Yb(3+)-Er(3+)-Gd(3+) co-doped sodium yttrium fluoride (NaYF4:Yb/Er/Gd) nano-rods. The red emission of NaYF4:Yb/Er/Gd nano-rods at 660 nm (excited with a 980 nm diode laser) was significantly enhanced by the ...

متن کامل

Aqueous phase synthesis of upconversion nanocrystals through layer-by-layer epitaxial growth for in vivo X-ray computed tomography.

Lanthanide-doped core-shell upconversion nanocrystals (UCNCs) have tremendous potential for applications in many fields, especially in bio-imaging and medical therapy. As core-shell UCNCs are mostly synthesized in organic solvents, tedious organic-aqueous phase transfer processes are usually needed for their use in bio-applications. Herein, we demonstrate the first example of one-step synthesis...

متن کامل

Unraveling Epitaxial Habits in the NaLnF4 System for Color Multiplexing at the Single-Particle Level.

We report an epitaxial growth technique for scalable production of hybrid sodium rare-earth fluoride (NaLnF4 ) microcrystals, including NaYF4 , NaYbF4 , and NaLuF4 material systems. The single crystalline nature of the as-synthesized products makes them strong upconversion emission. The freedom of combining a lanthanide activator (Er(3+) or Tm(3+) ) with a sensitizer (Yb(3+) ) at various doping...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 26 2  شماره 

صفحات  -

تاریخ انتشار 2015